
Lecture 22

Quality Factor of Cavities, Mode
Orthogonality

Cavity resonators are important for making narrow band filters. The bandwidth of a filter
is related to the Q or the quality factor to the cavity. A concatenation of cavity resonators
can be used to engineer different filter designs. Resonators can also be used to design various
sensing systems, as well as measurement systems. We will study this concept of Q in this
lecture.

Also, before we leave the lectures on waveguides and resonators, it will be prudent to
discuss mode orthogonality. Since this concept is very similar to eigenvector orthogonality
found in matrix or linear algebra, we will relate mode orthogonality in waveguides and cavities
to eigenvector orthogonality.

22.1 The Quality Factor of a Cavity–General Concept

The quality factor of a cavity or its Q measures how ideal or lossless a cavity resonator is.
An ideal lossless cavity resonator will sustain free oscillations forever, while most resonators
sustain free oscillations for a finite time. This is because of losses coming from radiation,
dissipation in the dielectric material filling the cavity, or resistive loss of the metallic part of
the cavity.
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234 Electromagnetic Field Theory

22.1.1 Analogue with an LC Tank Circuit

Figure 22.1: For the circuit on the left, it will resonate forever even if the source is turned
off. But for the circuit on the right, the current in the circuit will decay with time due to
dissipation in the resistor.

One of the simplest resonators imaginable is the LC tank circuit. By using it as an analogue,
we can better understand the resonance of a cavity. When there is no loss in an LC tank
circuit, it can oscillate forever. Moreover, if we turn off the source, a free oscillation solution
exists.1 One can write the voltage-current relation in the circuit as

I =
V

jωL+ 1/(jωC)
= V Y (22.1.1)

where

Y (ω) =
1

jωL+ 1/(jωC)
(22.1.2)

The above Y (ω) can be thought of as the transfer function of the linear system where the in
put is V (ω) and the output is I(ω). When the voltage is zero or turned off, a non-zero current
exist or persist at the resonance frequency of the oscillator. The resonant frequency is when
the denominator in the above equation is zero, so that I is finite despite V = 0. This resonant
frequency, obtained by setting the denominator of Y to zero, is given by ωR = 1/

√
LC.

When a small resistor is added in the circuit to give rise to loss, the voltage-current relation
becomes

I =
V

jωL+R+ 1/(jωC)
= V Y (22.1.3)

Y =
1

jωL+R+ 1/(jωC)
(22.1.4)

1This is analogous to the homogeneous solution of an ordinary differential equation.
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Now, the denominator of the above functions can never go to zero for real ω. But there exists
complex ω that will make Y become infinite. These are the complex resonant frequencies of
the circuit. The homogeneous solution (also called the natural solution, or free oscillation)
can only exists at the complex resonant frequencies. With complex resonances, the voltage
and the current are decaying sinusoids.

By the same token, because of losses, the free oscillation in a cavity has electromagnetic
field with time dependence as follows:

E ∝ e−αt cos(ωt+ φ1), H ∝ e−αt cos(ωt+ φ2) (22.1.5)

That is, they are decaying sinusoids. The total time-average stored energy, which is propor-
tional to 1

4ε |E|
2

+ 1
4µ |H|

2
is of the form

〈WT 〉 = 〈WE〉+ 〈WH〉
.
= W0e

−2αt (22.1.6)

If there is no loss, 〈WT 〉 will remain constant. However, with loss, the average stored energy
will decrease to 1/e of its original value at t = τ = 1

2α . The Q of a cavity is defined as
the number of free oscillations in radians (rather than cycles) that the field undergoes before
the energy stored decreases to 1/e of its original value (see Figure 22.2). In a time interval
τ = 1

2α , the number of free oscillations in radians is ωτ or ω
2α ; hence, the Q is defined to

be [32]

Q
.
=

ω

2α
(22.1.7)

Q is an approximate concept, and makes sense only if the system has low loss.

Figure 22.2: A typical time domain response of a high Q system (courtesy of Wikipedia).
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Furthermore, by energy conservation, the decrease in stored energy per unit time must be
equal to the total power dissipated in the losses of a cavity, in other words,

〈PD〉 = −d〈WT 〉
dt

(22.1.8)

By further assuming that WT has to be of the form in (22.1.6), then

−d〈WT 〉
dt

.
= 2αW0e

−2αt = 2α〈Wt〉 (22.1.9)

From the above, we can estimate the decay constant

α
.
=
〈PD〉

2〈WT 〉
(22.1.10)

Hence, we can write equation (22.1.7) for the Q as

Q
.
=
ω〈WT 〉
〈PD〉

(22.1.11)

By further letting ω = 2π/T , we lent further physical interpretation to express Q as

Q
.
= 2π

〈WT 〉
〈PD〉T

= 2π
total energy stored

Energy dissipated/cycle
(22.1.12)

In a cavity, the energy can dissipate in either the dielectric loss or the wall loss of the cavity
due to the finiteness of the conductivity. It has to be re-emphasized the Q is a low-loss
concept, and hence, the above formulas are only approximately true.

22.1.2 Relation to Bandwidth and Pole Location

The resonance of a system is related to the pole of the transfer function . For instance, in our
previous examples of the RLC tank circuit, the admittance Y can be thought of as a transfer
function in linear system theory: The input is the voltage, while the output is the current.
If we encounter the resonance of the system at a particular frequency, the transfer function
becomes infinite. This infinite value can be modeled by a pole of the transfer function in the
complex ω plane. In other words, in the vicinity of the pole in the frequency domain, the
transfer function of the system can be approximated by a single pole which is

Y (ω) ∼ A

ω − ωR
=

A

ω − ω0 − jα
(22.1.13)

where we have assumed that ωR = ω0 + jα, the resonant frequency is complex. In principle,
when ω = ωR, the reflection coefficient becomes infinite, but this does not happen in practice
because ωR is complex, and ω, the operating frequency is real. In other words, the pole is
displaced slightly off the real axis to account for loss. Using a single pole approximation, it
is quite clear that |Y (ω)| would peak at ω = ω0. At ω = ω0 ± α, the magnitude of |Y (ω)|
will be 1/

√
2 smaller, or that the power which is proportional to |Y (ω)|2 will be half as small.
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Therefore, the half-power points compared to the peak are at ω = ω0 ± α. Therefore, the
full-width half maximum (FWHM) bandwidth is ∆ω = 2α. Thus the Q can be written as in
terms of the half-power bandwidth ∆ω of the system, viz.,

Q
.
= ω0/∆ω (22.1.14)

The above implies that the narrower the bandwidth, the higher the Q of the system. Typical
plots of transfer function versus frequency for a system with different Q’s are shown in Figure
22.3.

Figure 22.3: A typical system response versus frequency for different Q’s using (22.1.4). The
Q is altered by changing the resistor R in the circuit.

22.1.3 Wall Loss and Q for a Metallic Cavity

If the cavity is filled with air, then the loss comes mainly from the metallic loss or copper-loss
from the cavity wall. In this case, the power dissipated on the wall is given by [32]

〈PD〉 =
1

2
<e
�
S

(E×H∗) · n̂ dS =
1

2
<e
�
S

(n̂×E) ·H∗ dS (22.1.15)

where S is the surface of the cavity wall.2 Here, (n̂ × E) is the tangential component of
the electric field which would have been zero if the cavity wall is made of ideal PEC. Also,

2We have used the cyclic identity that a · (b× c) = b · (c× a) = c · (a× b) in the above (see Some Useful
Mathematical Formulas).
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n̂ is taken to be the outward pointing normal at the surface S. The β (or k) vector in
the transmitted medium is very large due to the high-conductivity of the wall. Due to the
phase-matching condition, the transmitted wave β vector is almost normal to the interface.
Therefore, we can approximate the transmitted wave as a wave propagating normal to the
interface. In the metal, it decays predominantly in the direction of propagation which is
normal to the surface.

Figure 22.4: Due to high σ in the metal, and large |βt|, phase matching condition requires
the transmitted wave vector to be almost normal to the surface.

For such a wave, we can approximate n̂×E = HtZm where Zm is the intrinsic impedance

for the metallic conductor, as shown in Section 8.1, which is Zm =
√

µ
εm
≈
√

µ
−j σω

=
√

ωµ
2σ (1+

j),3 where we have assumed that εm ≈ − jσω , and Ht is the tangential magnetic field. This
relation between E and H will ensure that power is flowing into the metallic surface. Hence,

〈PD〉 =
1

2
<e
�
S

√
ωµ

2σ
(1 + j) |Ht|2 dS =

1

2

√
ωµ

2σ

�
S

|Ht|2 dS (22.1.16)

By further assuming that the stored electric and magnetic energies of a cavity are equal
to each other at resonance, the stored energy can be obtained by

〈WT 〉 =
1

2
µ

�
V

|H|2dV (22.1.17)

Written explicitly, the Q becomes

Q =
√

2ωµσ

�
V
|H|2 dV�

S
|Ht|2 dS

=
2

δ

�
V
|H|2 dV�

S
|Ht|2 dS

(22.1.18)

In the above, δ is the skin depth of the metallic wall. Hence, the more energy stored there
is with respect to the power dissipated, the higher the Q of a resonating system. Also, the
lower the metal loss, or the smaller the skin depth, the higher the Q would be.

Notice that in (22.1.18), the numerator is a volume integral and hence, is proportional to
volume, while the denominator is a surface integral and is proportional to surface. Thus, the

3When an electromagnetic wave enters a conductive region with a large β, it can be shown that the wave
is refracted to propagate normally to the surface as shown in Figure 22.4, and hence, this formula can be
applied.
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Q, a dimensionless quantity, is roughly proportional to

Q ∼ V

Sδ
(22.1.19)

where V is the volume of the cavity, while S is its surface area. From the above, it is noted
that a large cavity compared to its skin depth has a larger Q than an small cavity.

22.1.4 Example: The Q of TM110 Mode

For the TM110 mode, as can be seen from the previous lecture, the only electric field is
E = ẑEz, where

Ez = E0 sin
(πx
a

)
sin
(πy
b

)
(22.1.20)

The magnetic field can be derived from the electric field using Maxwell’s equation or Faraday’s
law, and

Hx =
jωε

ω2µε

∂

∂y
EZ =

j
(
π
b

)
ωµ

E0 sin
(πx
a

cos
)(πy

b

)
(22.1.21)

Hy =
−jωε
ω2µε

∂

∂x
EZ = −

j
(
π
a

)
ωµ

E0 cos
(πx
a

)
sin
(πy
b

)
(22.1.22)

Therefore
�
V

|H|2 dV =

� 0

−d

� b

0

� a

0

dx dy dz
[
|Hx|2 + |Hy|2

]
=
|E0|2

ω2µ2

� 0

−d

� b

0

� a

0

dx dy dz[(π
b

)2

sin2
(πx
a

)
cos2

(πy
b

)
+
(π
a

)2

cos2
(πx
a

)
sin2

(πy
b

)]
=
|E0|2

ω2µ2

π2

4

[
a

b
+
b

a

]
d (22.1.23)

A cavity has six faces, finding the tangential exponent at each face and integrate

�

S

|Ht| dS = 2

� b

0

� a

0

dx dy
[
|Hx|2 + |Hy|2

]

+ 2

� 0

−d

� a

0

dx dz |Hx(y = 0)|2 + 2

� 0

−d

� b

0

dy dz |Hy(x = 0)|2

=
2 |E0|2

ω2µ2

π2ab

4

[
1

a2
+

1

b2

]
+

2
(
π
b

)2
ω2µ2

|E0|2
ad

2
+

2
(
π
a

)2
ω2µ2

|E0|2
bd

2

=
π2 |E0|2

ω2µ2

[
b

2a
+

a

2b
+
ad

b2
+
bd

a2

]
(22.1.24)
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Hence the Q is

Q =
2

δ

(
ad
b + bd

a

)(
b

2a + a
2b + ad

b2 + bd
a2

) (22.1.25)

The result shows that the larger the cavity, the higher the Q. This is because the Q, as
mentioned before, is the ratio of the energy stored in a volume to the energy dissipated over
the surface of the cavity.

22.2 Mode Orthogonality and Matrix Eigenvalue Prob-
lem

It turns out that the modes of a waveguide or a resonator are orthogonal to each other. This
is intimately related to the orthogonality of eigenvectors of a matrix operator.4 Thus, it is
best to understand this by the homomorphism between the electromagnetic mode problem
and the matrix eigenvalue problem. Because of this similarity, electromagnetic modes are also
called eigenmodes. Thus it is prudent that we revisit the matrix eigenvalue problem (EVP)
here.

22.2.1 Matrix Eigenvalue Problem (EVP)

It is known in matrix theory that if a matrix is hermitian, then its eigenvalues are all real.
Furthermore, their eigenvectors with distinct eigenvalues are orthogonal to each other [77].
Assume that an eigenvalue and an eigenvector exists for the hermitian matrix A. Then

A · vi = λivi (22.2.1)

Dot multiplying the above from the left by v†i where † indicates conjugate transpose, then
the above becomes

v†i ·A · vi = λiv
†
i · vi (22.2.2)

Since A is hermitian, or A
†

= A, then the quantity v†i ·A · vi is purely real. Moreover, the

quantity v†i · vi is positive real. So in order for the above to be satisfied, λi has to be real.
To prove orthogonality of eigenvectors, now, assume that A has two eigenvectors with

distinct eigenvalues such that

A · vi = λivi (22.2.3)

A · vj = λjvj (22.2.4)

Left dot multiply the first equation with v†j and do the same to the second equation with v†i ,
one gets

v†j ·A · vi = λiv
†
j · vi (22.2.5)

v†i ·A · vj = λjv
†
i · vj (22.2.6)

4This mathematical homomorphism is not discussed in any other electromagnetic textbooks.
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Taking the conjugate transpose of (22.2.5) in the above, and since A is hermitian, their left-
hand sides (22.2.5) and (22.2.6) become the same. Subtracting the two equations, we arrive
at

0 = (λi − λj)v†j · vi (22.2.7)

For distinct eigenvalues, λi 6= λj , the only way for the above to be satisfied is that

v†j · vi = Ciδij (22.2.8)

Hence, eigenvectors of a hermitian matrix with distinct eigenvalues are orthogonal to each
other. The eigenvalues are also real.

22.2.2 Homomorphism with the Waveguide Mode Problem

We shall next show that the problem for finding the waveguide modes or eigenmodes is
analogous to the matrix eigenvalue problem. The governing equation for a waveguide mode
is a BVP involving the reduced wave equation previously derived, or

∇2
sψi(rs) + β2

isψi(rs) = 0,⇒ −∇2
sψi(rs) = β2

isψi(rs) (22.2.9)

with the pertinent homogeneous Dirichlet or Neumann boundary condition, depending on if
TE or TM modes are considered. In the above, the differential operator ∇2

s is analogous to
the matrix operator A, the eigenfunction ψi(rs) is analogous to the eigenvector vi, and β2

is

is analogous to the eigenvalue λi.
In the above, we can think of ∇2

s as a linear operator that maps a function to another
function, viz.,

∇2
sψi(rs) = fi(rs) (22.2.10)

Hence it is analogous to a matrix operator A, that maps a vector to another vector, viz.,

A · x = f (22.2.11)

We shall elaborate this further next.

Discussion on Functional Space

To think of a function ψ(rs) as a vector, one has to think in the discrete world.5 If one needs
to display the function ψ(rs), on a computer, one will evaluate the function ψ(rs) at discrete
N locations rls, where l = 1, 2, 3, . . . , N . For every rls or every l, there is a scalar number
ψ(rls). These scalar numbers can be stored in a column vector in a computer indexed by l.
The larger N is, the better is the discrete approximation of ψ(rs). In theory, N needs to be
infinite to describe this function exactly.6

5Some of these concepts are discussed in [35,131].
6In mathematical parlance, the index for ψ(rs) is uncountably infinite or nondenumerable.
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From the above discussion, a function is analogous to a vector and a functional space is
analogous to a vector space in linear or matrix algebra. However, a functional space is infinite
dimensional. But in order to compute on a computer with finite resource, such functions are
approximated with finite length vectors. Or infinite dimensional vector spaces are replaced
with finite dimensional ones to make the problem computable. Such an infinite dimensional
functional space is also called a Hilbert space.

It is also necessary to define the inner product between two vectors in a functional space
just as inner product between two vectors in an matrix vector space. The inner product (or
dot product) between two vectors in matrix vector space is

vti · vj =
N∑
l=1

vi,lvj,l (22.2.12)

The analogous inner product between two vectors in function space is7

〈ψi, ψj〉 =

�
S

drsψi(rs)ψj(rs) (22.2.13)

where S denotes the cross-sectional area of the waveguide over which the integration is per-
formed. The left-hand side is the shorthand notation for inner product in functional space or
the infinite dimensional functional Hilbert space.

Another requirement for a vector in a functional Hilbert space is that it contains finite
energy or that

Ef =

�
S

drs|ψi(rs)|2 (22.2.14)

is finite. The above is analogous to that for a matrix vector v as

Em =
N∑
l=1

|vl|2 (22.2.15)

The square root of the above is often used to denote the “length”, the “metric”, or the “norm”
of the vector. Finite energy also implies that the vectors are of finite length.

22.2.3 Proof of Orthogonality of Waveguide Modes8

Because of the aforementioned discussion, we see the similarity between a functional Hilbert
space, and the matrix vector space. In order to use the result of the matrix EVP, one key
step is to prove that the operator ∇2

s is hermitian. In matrix algebra, if the elements of a
matrix is explicitly available, a matrix A is hermitian if

Aij = A∗ji (22.2.16)

7In many math books, the conjugation of the first function ψi is implied, but here, we follow the electro-
magnetic convention that the conjugation of ψi is not implied unless explicitly stated.

8This may be skipped on first reading.
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But if a matrix element is not explicitly available, a different way to define hermiticity is
required: we will use inner products to define it. A matrix operator is hermitian if

x†i ·A · xj =
(
x†j ·A

† · xi
)†

=
(
x†j ·A · xi

)†
=
(
x†j ·A · xi

)∗
(22.2.17)

The first equality follows from standard matrix algebra,9 the second equality follows if A =

A
†
, or that A is hermitian. The last equality follows because the quantity in the parenthesis

is a scalar, and hence, its conjugate transpose is just its conjugate. Therefore, if a matrix A
is hermitian, then

x†i ·A · xj =
(
x†j ·A · xi

)∗
(22.2.18)

The above inner product can be used to define the hermiticity of the matrix operator A.
It can be easily extended to define the hermiticity of an operator in an infinite dimensional
Hilbert space where the matrix elements are not explicitly available.

Hence, using the inner product definition in (22.2.13) for infinite dimensional functional
Hilbert space, a functional operator ∇2

s is hermitian if

〈ψ∗i ,∇2
sψj〉 = (〈ψ∗j ,∇2

sψi〉)∗ (22.2.19)

We can rewrite the left-hand side of the above more explicitly as

〈ψ∗i ,∇2
sψj〉 =

�
S

drsψ
∗
i (rs)∇2

sψj(rs) (22.2.20)

and then the right-hand side of (22.2.19) can be rewritten more explicitly as

(〈ψ∗j ,∇2
sψi〉)∗ =

�
S

drsψj(rs)∇2
sψ
∗
i (rs) (22.2.21)

To prove the above equality in (22.2.19), one uses the identity that

∇s · [ψ∗i (rs)∇sψj(rs)] = ψ∗i (rs)∇2
sψj(rs) +∇sψ∗i (rs) · ∇sψj(rs) (22.2.22)

Integrating the above over the cross sectional area S, and invoking Gauss divergence theorem
in 2D, one gets that�

C

dln̂ · (ψ∗i (rs)∇sψj(rs)) =

�
S

drs
(
ψ∗i (rs)∇2

sψj(rs)
)

+

�
S

drs (∇ψ∗i (rs) · ∇sψj(rs)) (22.2.23)

where C the the contour bounding S or the waveguide wall. By applying the boundary
condition that ψi(rs) = 0 or that n̂ · ∇sψj(rs) = 0, or a mixture thereof, then the left-hand
side of the above is zero. This will be the case be it TE or TM modes.

0 =

�
S

drs
(
ψ∗i (rs)∇2

sψj(rs)
)

+

�
S

drs (∇ψ∗i (rs) · ∇sψj(rs)) (22.2.24)

9(A ·B ·C)† = C
† ·B† ·A† [77].
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Applying the same treatment to (22.2.21), we get

0 =

�
S

drs
(
ψj(rs)∇2

sψ
∗
i (rs)

)
+

�
S

drs (∇ψ∗i (rs) · ∇sψj(rs)) (22.2.25)

The above two equations indicate that

〈ψ∗i ,∇2
sψj〉 = (〈ψ∗j ,∇2

sψi〉)∗ (22.2.26)

proving that the operator ∇2
s is hermitian. One can then use the above property to prove

the orthogonality of the eigenmodes when they have distinct eigenvalues, the same way we
have proved the orthogonality of eigenvectors. The above proof can be extended to the case
of a resonant cavity. The orthogonality of resonant cavity modes is also analogous to the
orthogonality of eigenvectors of a hermitian operator.


